
HOMEWORK 9

Due date: Tuesday of Week 10

Exercises: M.2, M.4, M.5, M.7, page 475-476; Exercises: 3.1, 3.2, 3.3, page 506 of Artin’s book
For M.5, just prove the assertion, no matter what you use. For M.7, one can show that the reduction
map SL2(Z) → SL2(Z/NZ) is surjective for any positive integer N . For Exercise 3.1, page 506, use
induction on n.

Recall the following basic terminologies. Let F be a field and f ∈ F [x]. Then f is called separable
if f has no multiple roots (or it has no repeated roots) over any field extension K/F . An equivalent
condition is gcd(f, f ′) = 1. The field F is called perfect if any irreducible f ∈ F [x] is separable.

Problem 1. Let F be a field of characteristic p > 0.

(1) Given a ∈ F . Show that xp − a ∈ F [x] is either irreducible or a power (x − β)p for some
β ∈ F .

(2) Define F p := {xp : x ∈ F} ⊂ F . Show that F is perfect iff F = F p.
(3) Show that the finite field Fq is perfect, where q = pr for some prime integer p.

Hint: (1) is basically proved in class. The direction =⇒ of (2) follows from (1). For the direction
⇐= of (2), prove it by contradiction. It is related to Exercise 7.10, page 474 of Artin’s book.

Problem 2. Let F be a perfect field and f ∈ F [x]. Show that the following are equivalent:

(1) f is separable, i.e., f has no multiple roots over any field extension K/F ;
(2) gcd(f, f ′) = 1;
(3) f is a product of distinct irreducible polynomials, namely f = p1p2 . . . pk, with pi ∈ F [x]

irreducible and distinct.

The equivalence of (1) and (2) is Proposition 15.6.7, page 458, Artin’s book. Please repeat it here.
This is a generalization of the Lemma in page 266 of Hoffman-Kunze. Actually the equivalence of
(2) and (3) can be proved in the same way as the proof of the Lemma in page 266 of Hoffman-Kunze.

Recall that a field extension K/F is called separable if for any α ∈ K, its minimal polynomial is
separable.

Problem 3. Let η : F → F ′ be an isomorphism of fields and let K/F be a separable finite extension
of degree n. Let Ω be an algebraically closed field which contains F, F ′,K. Consider the set

I(K, η, F, F ′) = {σ : K → Ω : σ(a) = η(a),∀a ∈ F} .

Show that |I(K, η, F, F ′)| = n.

An element σ ∈ I(K, η, F, F ′) is called an extension of η to K. The following is an outline of the
proof. Fill some details.

Proof of Problem 3. Take α ∈ K but α /∈ F . Consider I(F (α), η, F, F ′). If τ ∈ I(F (α), η, F, F ′),
then τ : F (α) → Ω is uniquely determined by the value τ(α). Let µα ∈ F [x] be the minimal
polynomial of α. By assumption µα is separable. Moreover, τ(α) is a root of η(µα) ∈ F ′[x]. Now
η(µα) is also separable (check it) and it has m distinct roots in Ω with m = [F (α) : F ] > 1. Now
τ(α) is uniquely determined by such a root and thus there are m elements in I(F (α), η, F, F ′),
say {τ1, . . . , τm}. If F (α) = K, we are done. If not, by induction, there are r elements in each
I(K, τi, F (α), τi(F (α))), say {σi1, . . . , σir}, with r = [K : F (α)] < n. Now check I(K, η, F, F ′) =
{σij , 1 ≤ i ≤ m, 1 ≤ j ≤ r}. Thus |I(K, η, F, F ′)| = rm = n. □
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2 HOMEWORK 9

Problem 4. Assume that K/F be a separable field extension of degree n. Let Ω be an algebraically
closed field such that F ⊂ K ⊂ Ω (such a field always exists). Show that there are n distinct F -
embeddings σ : K → Ω (an F -embedding is a field homomorphism such that σ(a) = a,∀a ∈ F ).
Moreover, for any α ∈ K, and any F -embedding τ : F (α) → Ω, show that |I(K, τ, F (α), τ(F (α)))| =
[K : F (α)].

This is a corollary of the last problem. The statement is an important characteristic property
of separable extension. If K/F is also normal, then an F -embedding σ : K → Ω is actually an
F -isomorphism K → K, and thus an element in Gal(K/F ). In this case, the assertion is proved in
class.

Problem 5. Construct a splitting field of the polynomial f = x5 − 2 ∈ Q[x] over Q. Find its
dimension over Q.

1. More on traces and norms

Problem 6. Let K/F be a finite field extension and let E be any intermediate field (namely,
F ⊂ E ⊂ K). Given α ∈ K, we can consider the tower F ⊂ E ⊂ E(α) ⊂ K.

(1) Show that

TrK/E(α) = TrE(α)/E(TrK/E(α)(α)), and NmK/E(α) = NmE(α)/E(NmK/E(α)(α))

(2) Show that

TrK/F (α) = TrE(α)/F (TrK/E(α)(α)), and NmK/F (α) = NmE(α)/F (NmK/E(α)(α))

(3) Show that

TrE(α)/F (α) = TrE/F (TrE(α)/E(α)), and NmE(α)/F (α) = NmE/F (NmE(α)/E(α)).

(4) Show that

TrK/F (α) = TrE/F (TrK/E(α)), and NmK/F (α) = NmE/F (NmK/E(α)).

(4) follows from (1) (2) and (3) directly. (1) is actually proved in last HW. See Problem 5 (5),
HW8. Proof of (2) should be easy. Proof of (3) is complicate but it is standard linear algebra.
This problem is related to a problem of HW11, 2023. Here is an explanation. View K as a vector
space over E and consider the linear operator Tα,E : K ∼= Em → K ∼= Em, which defines an a
matrix in A = Matm×m(E), where m = [K : E]. We can also view E as a vector space over
F of dimension n with n = [E : F ] and thus Em ∼= Fmn. The same map defines a matrix in
B ∈ Mat(mn)×(mn)(F ). What is the relation between det(A) ∈ E and det(B) ∈ F? The answer
given by (4) is det(B) = NmE/F (det(A)). This is roughly explained in HW11, 2023, and was proved
there when E/F = C/R. (4) can be proved directly and det(B) = NmE/F (det(A)) is true more
generally, which means that the matrix A need not to come from a field extension K/E. Check
HW11, 2023 and the reference given there.

Problem 7. Let K/F be an extension of fields degree n. Let α ∈ K and f = µα be the minimal
polynomial of α. Let α1, . . . , αm be all the roots of f in some extension of F . Here m = deg(f) and
we can choose α1 = α. Show that

TrK/F (α) = r(α1 + · · ·+ αm),

and
NmK/F (α) = (α1 · · ·αm)r,

where r = [K : F (α)] = n/m.

Problem 8. Assume that K/F be a separable field extension of degree n. Let Ω be an algebraically
closed field such that F ⊂ K ⊂ Ω (such a field always exists). We know that there are n distinct
F -embeddings σ : K → Ω by Problem 3 (an F -embedding is a field homomorphism such that σ(a) =
a,∀a ∈ F ). Denote all such F -embeddings by {σ1, . . . , σn}. Show that

TrK/F (α) =

n∑
i=1

σi(α), and NmK/F (α) =

n∏
i=1

σi(α).
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Hint: This is a corollary of Problem 4 and Problem 7.
Here is one example. Let F = Q and K = Q(α) with α = 3

√
2. Take Ω = C. Then all the

Q-embeddings K → C are {σ1, σ2, σ3}, where σ1(α) = α, σ2(α) = ωα and σ3(α) = ω2α with

ω = e2π
√
−1/3. Note that α is a root of x3 − 2 = 0 and thus σ(α) must be also a root of x3 − 2 = 0.

When K/F is Galois, it is easy to show that {σ1, . . . , σn} = Gal(K/F ) and thus

TrK/F (α) =
∑

σ∈Gal(K/F )

σ(α), and NmK/F (α) =
∏

σ∈Gal(K/F )

σ(α).

The assertion of Problem 8 is false if F/K is not separable. See the next problem.

Problem 9. Let F = F2(x) (the fractional field of the polynomial ring F2[x]) and let K = F (
√
x) =

F [y]/(y − x2). Show that TrK/F (α) = 0 for any α ∈ K. Moreover, check the assertion of the last
problem is false in this example.

If K/F is finite separable extension, then one can show that TrK/F is not a zero map. If charac-
teristic of F is zero, then this is of course trivial, because TrK/F (1) = [K : F ] ̸= 0. If characteristic
of F is p > 0, it need some work. We might prove this in future HW.
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